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1. Materials and methods 

1.1 Characterizations of materials 

To measure the stress-strain curves of TPU, PLA, and PETG at room temperature (25C), uniaxial 

tensile tests of dog-bone-shaped specimens are performed, as shown in Figure S1. The material 

testing machine (Zwick Z005) is equipped with a 5 KN load cell. Specimens shown in Figure S1a are 

fully clamped at both ends and stretched at a strain rate of 0.2 min
-1

 at 25C. 

 

Figure S1. Measured uniaxial nominal stress-strain curves of TPU, PLA, and PETG at 25C. a) Dog-

bone shaped plate specimens. b-d) The corresponding stress-strain curves.  

The measured stress-strain curves in Figure S1b to d show that TPU can be modeled by the Mooney-

Rivlin hyperelastic model while PLA and PETG are approximately elastoplastic. Their 

corresponding material parameters can be identified as follows: for TPU, 
10 10.85 MPaC    and 

01 23.98 MPaC  , with Young’s modulus given by  25

TPU 10 016 78.4 MPaE C C   ; for PLA, 
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Young’s modulus 25

PLA 2.34 GPaE  , yield strength 55.6 MPay   and yield strain 0.024y  ; for 

PETG, 25

PETG 1045 MPaE  , 27.5 MPay  , and 0.032y  . 

 

Figure S2. Measured nominal stress-strain responses of PLA and TPU at temperatures of 65C and 

85C.  

As for the stress-strain responses at higher temperatures (65C and 85C), tensile tests of TPU, PLA, 

and PETG are conducted using a uniaxial testing machine (SANS CMT5105S) that is equipped with 

a 50 N load cell and a thermal chamber. The temperature is set as 65C and 85C. The corresponding 

measured stress-strain curves are shown in Figure S2. The Young’s moduli are inferred from the 

initial slope of the uniaxial stress-strain curves in the linear regime, giving 65

TPU 45 MPaE  , 

85

TPU 40 MPaE  , 65

PLA 5.5 MPaE  , and 85

PETG 2.9 MPaE  , where superscripts denote the 

corresponding temperature. 
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1.2 Methods 

1.2.1 Bi-material 3D printing 

 

Figure S3. Fabrication of bi-material kirigami-based units. a) Bi-material printer (Ultimaker 3). b) 

Bi-material unit; c) Connecting interface between PLA (yellow) and TUP (white). 

1.2.2 Assembly of pixels 

 

Figure S4. Components of a pixel, including units, a lid, and a base. 
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1.2.3 Measured force-displacement curves of units 

 

Figure S5. Tensile tests of units at 25C, 65C, and 85C. a-d) Geometrical dimensions of Cases A, 

B1, B2, and C. e-h) Experimentally measured force-displacement behaviors of the units at different 

temperatures. i-l) Images of experimentally observed stretching process. (a and e) Case A, always 

monostable. (b and f) Case C, always bistable. (c and g) Case B1, bistable at 25C and monostable 

65C. (d and h) Case B2, bistable at 25C and monostable at 85C. 
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2. Theoretical model 

2.1 Mechanical model of bi-material kirigami-based units  

In the main text, bi-material kirigami-based units are stretched, released, and heated in steps, 

producing the transformation of the unit between different states. The underlying physical 

mechanism (i.e., tunable bistability) of the unit needs to be investigated quantitatively. First, referring 

to the previous work
1,2

, we establish the equivalent mechanical model for these bi-material units 

shown in Figure S6.  

 

Figure S6. Theoretical model of the bi-material kirigami-based unit. a) Bi-material kirigami-based 

unit. b) Sequential deformations of the unit. c, d) The deformation pattern of the unit and the 

equivalent mechanical model. e) Normalized force-displacement responses for various  (e.g., for 

0.01 to 0.08). 

The bi-material unit (Figure S6a) includes four square plates (edge length L) and four composite 

cantilevers that have TRPs made of active-material parts (width 
ah ) and passive-material parts 

(width ph ). The interconnect ligament between each square and cantilever can be seen as a square 

with the width of l. The deformation process of the unit upon stretching in the vertical direction is 
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illustrated in Figure S6b. According to ref. 
1
, the vertical force 

YF  conjugated to displacement V can 

be written in a dimensionless form as  

  
*

2

2 2

3 arcsin
1 1 1

1 1

Y
Y

F V V
F V V

KL V V


  

 

 
       

  
  S1 

where 
Y YF F KL   and V V L   are the non-dimensional force and displacement, and 

 2K KL   is the only parameter in determining the force-displacement response. Figure S6e 

shows that the critical value of 0.047   can separate bistability and monostability. 

2.2 Determination of stiffness K and K  

Then with the help of FEM simulations, we quantify the stiffness of the rotational spring K  and the 

linear spring K  in terms of the geometrical parameters l , 
ah , 

ph , L , and b , and the material 

parameters of the unit (i.e., Young’s moduli 
aE  and 

pE ).  

First, consider the rotational spring stiffness K . Given the ref.
1
, through dimensional analysis, K  

can be assumed to have the following form of  

 
2

1 pK E bl    S2 

in which 
1  is a dimensionless coefficient to be determined. Through FEM simulations of 

interconnected ligaments with different sizes, it can be obtained as 
1 0.08  . 

Second, consider the linear spring stiffness K . It approximates the effects of the cantilevers with the 

geometrical parameters 
ah , ph , b , and L  defined in Figure S6a. Dimensional analysis indicates  

 2 3

E I
K

L


 
   S3 
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where 
2  is the dimensionless coefficient and E I   is the equivalent flexural rigidity of the 

composite cantilever. And E I   can be obtained as  

 

2

a p a p a p 3 3

a a p p

a a p p

( )
( ).

4( ) 12

bE E h h h h b
E I E h E h

E h E h


    


  S4 

Combining Eqs. (3) and (4), the linear spring stiffness K  can be expressed as  

 

2

a p a p a p 3 3

2 a a p p

a a p p

( )
( ) .

4( ) 12

bE E h h h h b
K E h E h

E h E h


 
   

  

  S5 

 

Figure S7. FEM calculated dependence of stiffness K on the geometrical parameters. 

In order to evaluate K , we compute the force-displacement responses of the unit with various 

geometrical parameters using FEM. TPU-made units with different widths of the cantilever are 

simulated, obtaining the force-displacement curves denoted by symbols in Figure S7a. By fitting the 

FEM results with the simplified model Equation S1 in conjunction with K  from Equation S2, the 

corresponding values of K  can be obtained. Then, the coefficient 
2  can be determined. Therefore, 

the dependence of 
2  upon h L  can be quantified and is shown in Figure S7b, in which h  denotes 

the equivalent width and can be expressed as  
1 3

a p a ph E E h L h L   
  

. Based on the FEM 

results, a semi-empirical formula for 
2  can be obtained as  
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 
2

1 3 pa
a p

0.346
.

0.071
hh

E E
L L

 

 

  S6 

Through the above analysis, we have established a quantitative relationship between the stiffnesses 

( K  and K
) and geometrical parameters ( l , 

ah , 
ph , L , and b ). 

2.3 Stability phase diagrams of the units 

Once K  and K
 are determined,   can be expressed as  

 

   
1 32 pa

a p

2
p p 2a a 33

pa a

p pa p

a

2.772 0.071

3 ( )

( )

hh
l L E E

L LK

h hh hKL
hE hL L L L

E hh E L L

L E L



 
  

  

    
    

    

.  S7 

Equation S7 shows   as a function of four dimensionless parameters, i.e., l L , 
a pE E , 

ah L , and 

ph L . In the following discussion, we fix 0.1l L   and vary 
a pE E  according to the different 

constituent materials and applied temperatures. With Equation S7, the phase diagram of 25

PLA  at 25C 

in the 
TPU PLAh L h L  space is shown in Figure S8a. The green solid line given by 25

PLA 0.047   

indicates the bistable-monostable transition boundary. The area in the upper right represents 

bistability while the lower left regime denotes monostability. When the temperature increases to 

65C, Young’s moduli have changed significantly, becoming 65

PLA 5.5 MPaE   and 65

TPU 45 MPaE  . 

Similarly, the phase diagram of 65

PLA  at 65C in the 
TPU PLAh L h L  space is shown in Figure S8b, 

in which the pink solid line given by 65

PLA 0.047   divides it into two parts (i.e., monostable and 

bistable). Then we put the two boundary lines in Figure S8c to get the range of geometric parameters 

of units that can realize bistability at 25C and monostability at 65C. The phase diagram can then be 

divided into three parts by two lines in the 
TPU PLAh L h L  space, that is, Case A, always 
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monostable with and without heating; Case B1, realizing bistability-to-monostability transition by 

heating; Case C, always bistable. 

Second, as for the units made of TPU and PETG (active material), Young’s moduli of PETG are 

25

PETG 1045 MPaE   at 25C and 85

PETG 2.9 MPaE   at 85C. Similar to Figure S8a to c, we can obtain 

the phase diagrams of 25

PETG , 85

PETG , and 25 85

PETG PETG   in the 
PETG PETGh L h L  space, Figure S8d to 

f. 

 

Figure S8. Bistable phase diagram of the units made of (a-c) PLA and TPU, and (D to F) PETG and 

TPU at different temperatures. a, b) Phase diagrams and contour maps of 25

PLA  and 65

PLA  in the 

TPU PLAh L h L  space at 25C and 65C. Green and pink lines indicate the bistable-monostable 

transition boundary at 25C and 65C for the unit cell made of PLA and TPU. c) Phase diagram for 

the factor 25 65

PLA PLA   in the 
TPU PLAh L h L  space. Two lines divide the space into three parts, 

representing three kinds of unit cells (i.e., Cases A, B, and C) respectively. d-f) Phase diagrams and 

contour maps of the units made of PETG and TPU at the temperature of 25C and 85C. 
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3. Supplemental results & figures 

3.1 Construction of tree diagram 

The tree diagrams in Figures 1B and 5A show that the state changes of the pixels realize independent 

information for each layer. The principle underlying the tree diagram construction is shown in Figure 

S9. Note that state transitions between layers can be represented by three types of arrows: red arrows 

indicate no physical implementation, green arrows mean that the state change is beyond definition, 

and blue arrow denotes that the state change is available. 

 

Figure S9. Construction of three diagrams. a) Tree diagram with two states in each layer of 

information, i.e., ‘0’ and ‘1’ states in the first layer; ‘1’ and ‘2’ states in the second. b) Tree diagram 

with three available states in each layer. c) Tree diagram with four available states in each layer. 

As for the tree diagram (Figure 1b and Figure S9a), each layer of information is expressed by a 

combination of pixels. In the first layer, states ‘0’ and ‘1’ are selected. We can use the pixels with 

these two states to construct arbitrary messages in the first layer. As for the second layer of 

information, the pixels must meet the state changes of ‘0’ to ‘0’, ‘0’ to ‘1’, ‘1’ to ‘0’, and ‘1’ to ‘1’ to 

achieve independent expression of the second layer of information. However, there is no physical 

model that can correspond to the state change of ‘1’ to ‘0’ in our work, e.g., the pixel of the kirigami-
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based unit cannot achieve ‘1’ to ‘0’ by heating. Therefore, the state transition of ‘1’ to ‘0’ is denoted 

by a red arrow (Figure S9a). Herein, as an example shown in Figure S10, we encode two layers of 

information (i.e., ‘T’ for the first and ‘L’ for the second) with Encoder 1-2 that has no ‘1’ to ‘0’ state 

transition. There is one pixel (colored in green and marked by ‘?’ in Figure S10c) that cannot be 

built. Therefore, the ‘2’ state is added to the second layer (Figure S9a) so that states ‘1’ and ‘2’ are 

used to present the information of the second layer. The state change of ‘0’ to ‘0’ is excluded here, 

denoted by green arrows. As for the third layer of information, the state changes of ‘1’ to ‘1’, ‘1’ to 

‘2’, ‘2’ to ‘1’, and ‘2’ to ‘2’ are needed to achieve independent expression of the third layer of 

information. However, the state change of ‘2’ to ‘1’ cannot be satisfied. Similarly, the ‘3’ state is 

added into the third layer of information, and together with the ‘2’ state to express the information, 

realizing state changes of ‘1’ to ‘2’, ‘1’ to ‘3’, ‘2’ to ‘2’, and ‘2’ to ‘3’. As shown in Figure S9a, the 

state changes of ‘1’ to ‘0’, ‘2’ to ‘0’, and ‘2’ to ‘1’ are deleted and denoted by red arrows, meaning 

that they cannot be physically realized. The state change of ‘1’ to ‘1’ is denoted by green arrows 

since it is beyond definition. According to this construction method, the information of the n
th

 layer 

can be expressed by those of the ‘n-1’ and ‘n’ states.  

 

Figure S10. An example of a failed encoding of two layers of information with Encoder 1-2. 

As for the tree diagram with three states in each layer of information (Figure 5a, Figure S9b), there 

are states ‘0’, ‘1’, and ‘2’ in the first layer. Considering that it is not possible to change the states 

from ‘2’ to ‘0’ and ‘2’ to ‘1’ (marked by red arrows) and the number of states per layer is three, we 

add states ‘3’ and ‘4’ in the second layer and together with the ‘2’ state to represent the second 

information. Similarly, the information of the n
th

 layer can be represented in terms of the ‘2n-2’, ‘2n-

1’, and ‘2n’ states (Figure 5a). 
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For the tree diagram with four states in each layer of information, Figure S9c shows that the ‘0’, ‘1’, 

‘2’, and ‘3’ states are in the first layer, the ‘3’, ‘4’, ‘5’, and ‘6’ states are in the second layer. 

Similarly, there are states of ‘3n-3’, ‘3n-2’, ‘3n-1’, and ‘3n’ in the n
th

 layer. 

3.2 Finite element method (FEM) simulation 

FEM is used to simulate the deformation process of the ciphermaterials, with the commercially 

available software ABAQUS (version 2017). In the simulations, contact and geometrical nonlinearity 

are considered. A quasi-static general algorithm is adopted. Note that, to stabilize the simulations, an 

artificial dissipation factor of 
42 10  is introduced. The model is meshed using hybrid 8-node linear 

brick elements (i.e., C3D8H elements in ABAQUS) and mesh sensitivity is conducted to ensure 

numerical convergence. With the properties of materials given in Section 1.1, the materials are 

modeled as linearly elastic at a given temperature. A multi-step geometrically nonlinear static 

analysis is performed for stretching loading, unloading, and heating. As for the loading process, 

displacement-controlled loading is applied to the structure, leading to the snap-through of units. The 

unloading is realized by removing the load.  

3.3 Encoding and storage of two layers of information  

The pixelated mechanical metamaterial with two-layer information can be obtained using pixels 

composed of two units. According to the tree diagram (Figure 1b), four pixels composed of two of 

Cases A, B1, B2, and C (i.e., A-B1, A-C, B1-B1, B1-C) are shown in Figure S11a to d. By applying a 

two-step operation (i.e., Step 1, stretch and release; Step 2, heat at 65C), these pixels can produce 

the state changes of ‘1’ to ‘2’, ‘1’ to ‘1’, ‘0’ to ‘2’, and ‘0’ to ‘1’. The encoding approach (Encoder 2-

2) of two layers of information is shown in Figure S11e. Combining Encoder 2-2 and discretized 

pixmaps of ‘T’ and ‘H’, design of the corresponding mechanical metamaterial can be obtained 

(Figure S11f and g). It can be decoded into the two letters (i.e., ‘T’ and ‘H’ in Figure S11h) through 

two operations.  
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Figure S11. Encoding and storage of two layers information in a pixelated mechanical metamaterial. 

a-d) Pixels (i.e., A-B1, A-C, B1-B1, B1-C) for four different state changes, i.e., ‘1’‘2’, ‘1’‘1’, 

‘0’‘2’, ‘0’‘1’. e) Two-layer information encoding approach with two states of each layer 

(Encoder 2-2). f, g) Encoding and storage of the words ‘T H’ in the pixelated mechanical 

metamaterials with 33 pixels. h) Decoding process of the mechanical metamaterial, acquiring the 

information in turn, i.e., ‘T’‘U’. Scale bars, 2 cm. 
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3.4 Matlab-based Encoder 

 

Figure S12. Flow diagram of encoding process for the Matlab-based Encoder. 

3.5 Discretization method 

A surface fed into the MATLAB GUI is discretized automatically according to the given resolution. 

The discretization method is shown in Figure S13. As an example, the surface with the expression 

z x  is given as an input to be discretized into three resolutions (Figure S13a). As for the low 

resolution, a rectangle mesh is generated for the target surface, producing 5 5 25   grids of the 

same size. Then, find the centroids of each grid (marked as blue dots) and record their z-coordinate 

values. The surface is virtually sectioned into three parts along the z direction with the corresponding 

resolution ( 3r  ) so that the dots that represent the position of grids can fall into one of these 

sectioned regions. And the dots that fall in the same region are marked with the same color and their 

corresponding grids are represented by pixels of the same height. Finally, the output approximates 

the surface by using 25 pixels with three heights. Similarly, increasing the resolution, i.e., increasing 

the values of p , q , and r , allows the discretized surface to represent the surface more accurately. 

Moreover, two examples with the expressions 
2 2x yz xe   and 2 2z x y   are discretized in high 

resolution (see Figure S13b). 

As for the discretization of alphabets (A-Z) and numbers (0-9), we use 5 5  pixels to describe them 

as shown in Figure S14. Herein, two states represented by black and white pixels are adopted to 

express the information. 
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Figure S13. Discretization method of surfaces. 
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Figure S14. Discretization of letters and numbers. 
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3.6 Encoding of surfaces with different resolutions 

Here, we discretize and encode three surfaces (i.e., pyramid, wave, and hyperbolic paraboloid) with 

three different resolutions (i.e., low, medium, and high). 

 

Figure S15. Discretization and encoding of three surfaces at low resolution (i.e., 5p q  , 3r  ). a) 

Discretization of three surfaces into 5 5  pixels with three different heights. b) Arrangement of the 

ciphermaterial encoded with three surfaces. c) The fabricated ciphermaterial. 
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Figure S16. Discretization and encoding of three surfaces at medium resolution (i.e., 10p q  , 

6r  ). a) Discretization of three surfaces into 10 10  pixels with six different heights. b) 

Arrangement of the pixelated mechanical metamaterial encoded with three surfaces. 
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Figure S17. Discretization and encoding of three surfaces at high resolution (i.e., 15p q  , 9r  ). 

a) Discretization of three surfaces into 15 15  pixels with nine different heights. b) Arrangement of 

the pixelated mechanical metamaterial encoded with three surfaces. 
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3.7 Kirigami-based bimaterial units with different TRPs 

To tailor the temporal responses of the units by thermal management, four units with different 

porosities are fabricated by 3D printing (Figure S18). The cross-section of the TRPs is a hollow 

square. Three differently sizes with dimensions 5.0 mm 4.5 mm  and thickness of 0.5 mm , 

1.0 mm , and 1.5 mm  are considered. The porosities of TRPs are 0.58, 0.28, 0.08, and 0. 

 

Figure S18. Kirigami-based bi-material units with different TRPs. 
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3.8 Additional encoding approach 

 

Figure S19. Three-layer information encoding approach (Encoder 3-3) with three states for each 

layer. 

 

Figure S20. Five-layer information encoding approach (Encoder 5-2) with two states for each layer. 

The loading sequence is as follows: Step 1, stretch and release (S&R); Step 2, heat in the water at 

65C for 25s; Step 3, heat in the water at 65C for 70s; Step 4, heat at 85C for 15s; Step 5, heat at 

85C for 70s.  
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4. Captions for Videos 

Video S1: Design and mechanical responses of pixels. 

Video S2: Encoding and storage of one layer of information in a pixelated mechanical metamaterial. 

The first example is erasable information encoding. The second is heating-visible information 

encoding. 

Video S3: Encoding and storage of two layers of information in a pixelated mechanical 

metamaterial. Here, the pixelated mechanical metamaterial with two-unit-constructed pixels achieves 

the encoding and storage of two layers of information, i.e., ‘T’ for the first, ‘H’ for the second. 

Video S4: Encoding and storage of one layer of information in a pixelated mechanical metamaterial. 

Here, the pixelated mechanical metamaterial with three-unit-constructed pixels achieves the 

encoding and storage of three layers of information, i.e., ‘T’ for the first, ‘H’ for the second, and ‘U’ 

for the third. 

Video S5: Encoding and storage of three layers of 3D surface information in a pixelated mechanical 

metamaterial. Here, three surfaces (i.e., pyramid, wave, and hyperbolic paraboloid) are encoded into 

the pixelated mechanical metamaterial. Through three-step operation (i.e., stretching and releasing, 

65C heating, and 85C heating), the information can be displayed. 

Video S6: MATLAB-based Encoder. Here, a Matlab-based tool is provided to enable the design of 

the pixelated mechanical metamaterial so that the desired arbitrary information can be encoded and 

stored. 

Video S7: Tailored temporal responses by thermal management. Bi-material printed units of Case 

B1h and Case B2h with hollow TRPs are introduced to fabricate pixels. Besides the regulation 

through temperatures, time is considered as an extra key factor. 
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